Einführung in die Logik - 4

Prädikatenlogik: Lexikon und Syntax

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Prädikatenlogik Beispiele (1) a. **P1:** Alle KursteilnehmerInnen bestehen die Klausur. b. **P2:** Maria ist eine Kursteilnehmerin. c. **C:** Maria besteht die Klausur. (2) a. **P1**: Jede(r), der/die die Hausaufgaben macht, besteht die Klausur. b. **P2:** Einige KursteilnehmerInnen machen die Hausaufgaben. c. **C:** Einige KursteilnehmerInnen bestehen die Klausur. a. **P1:** (3) Kein(e) KursteilnehmerIn vergisst die Hausaufgaben. b. **P2:** Maria ist eine Kursteilnehmerin.

Maria vergisst nicht die Hausaufgaben.

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

c. **C:**

Prädikatenlogik: Ausdrucksklassen

Prädikate

- x ist_eine_Kursteilnehmerin
- x besteht_die_Klausur
- x macht_die_Hausaufgaben
- x vergisst_die_Hausaufgaben
- x besteht y
- x macht y
- x vergisst y
- x schenkt y z
- ▶ mehrstellige Prädikate werden auch Relationen genannt

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Prädikatenlogik: Ausdrucksklassen

Terme/Individuenkonstanten

- Maria
- die Klausur
- das Tutorium
- er/sie/es
- die Hausaufgaben

Quantoren

- alle
- jede/jeder/jedes
- einige
- kein/keine
- niemand

Prädikatenlogik: Lexikon

Das Lexikon der Prädikatenlogik besteht aus

(1)	Individuenkonstanten	a, b, c,, j, m,
(2)	Individuenvariablen	x, y, z,, x ₁ , x ₂ , x ₃ ,
(3)	Prädikaten (mit fester Stelligkeit)	F, G, H,, P, Q, R,
(4)	den Konnektoren der AL	$\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
(5)	Quantoren	∀ (Universal-Q., All-Q.)
		∃ (Partikular-Q., Existenz-Q.)
(6)	Identitätszeichen	_

Individuenkonstanten und Individuenvariablen werden *Terme* genannt.

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Prädikatenlogik: Syntax

Die Syntax der Prädikatenlogik: wfAs der PL

• Wenn P ein n-stelliges Prädikat ist und $t_1, ..., t_n$ Terme sind, dann ist

 $P(t_1, ..., t_n)$ ein wfA der PL.

- Wenn A und B wfAs der PL sind, dann sind auch ¬A, A∧B, A∨B, A→B, A↔B wfAs der PL.
- Wenn A ein wfA der PL ist und x eine Individuenvariable, dann ist auch ∀xA und ∃xA ein wfA der PL.
- Wenn t_1 und t_2 Terme sind, dann ist $t_1 = t_2$ ein wfA der PL.

Übersetzungen natürlich-sprachlicher Sätze in die Sprache der Prädikatenlogik

Peter bewundert Maria.

Peter ⇒ p
 Maria ⇒ m
 x bewundert y ⇒ B(x, y)
 Peter bewundert Maria. ⇒ B(p, m)

Ein Kursteilnehmer bewundert Maria.

- x ist Kursteilnehmer \Rightarrow K(x)
- > Ein Kursteilnehmer bewundert Maria.

 $\Rightarrow \exists x (K(x) \land B(x, m))$

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Übersetzungen natürlich-sprachlicher Sätze in die Sprache der Prädikatenlogik

Kein Kursteilnehmer bewundert Maria.

$$\rightarrow$$
 $\neg \exists x (K(x) \land B(x, m))$

Ein Kursteilnehmer bewundert Maria nicht.

$$ightharpoonup \exists x (K(x) \land \neg B(x, m))$$

Alle Kursteilnehmer bewundern Maria.

Jeder Kursteilnehmer bewundert Maria.

$$ightharpoonup \forall x (K(x) \rightarrow B(x, m))$$

Nicht alle Kursteilnehmer bewundern Maria.

Nicht jeder Kursteilnehmer bewundert Maria.

$$ightharpoonup \neg \forall x (K(x) \rightarrow B(x, m))$$

Der Skopus (Geltungsbereich) eines Quantors

 $\exists x \; \underline{F(x)}$ Skopus von $\exists x$

 $\exists y \ \mathbf{R}(\mathbf{x}, \mathbf{y}) \land \mathsf{F}(y)$ Skopus von $\exists y$

 $\exists y \ (R(x, y) \land F(y))$ Skopus von $\exists y$

 $\exists x \forall y \ (R(x, y) \rightarrow Q(y, x))$

 $\exists x \forall y \ (R(x, y) \to Q(y, x))$ Skopus von $\exists x$ $\exists x \forall y \ (R(x, y) \to Q(y, x))$ Skopus von $\forall y$

 $\exists x \; (F(x) \land \forall y \; (G(y) \to \exists z \; R(x, \, y, \, z)))$

 $\exists x \ \underline{(F(x) \land \forall y \ (G(y) \to \exists z \ R(x, y, z)))}$ Skopus von $\exists x$ $\exists x \ (F(x) \land \forall y \ \underline{(G(y) \to \exists z \ R(x, y, z))})$ Skopus von $\forall y$ $\exists x \ (F(x) \land \forall y \ (G(y) \to \exists z \ \underline{R(x, y, z)}))$ Skopus von $\exists z$

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Skopus-relevante Definitionen

gebundene und freie Variablen

Das Vorkommen einer Variable x ist **gebunden**, wenn x im Skopus eines Quantors ∀x oder ∃x auftritt. Eine Variable ist **frei**, wenn sie nicht gebunden ist.

Aussagen der PL

- Ein wfA der PL, der keine freien Variablen enthält, ist eine Aussage der PL.
 - a.: Proposition, geschlossener Ausdruck, geschlossene Formel
- Ein wfA der PL mit mindestens einer freien Variable wird propositionale Funktion genannt.
 - a.: offener Ausdruck, offene Formel

Skopus-Ambiguitäten

Quantorenskopus ist eine notorische Quelle von Mehrdeutigkeiten:

- Jede Studentin der Computerlinguistik muss bis zur Zwischenprüfung ein Buch über Parsing gelesen haben.
 - $\forall x \exists y (CLS(x) \rightarrow BUCHP(y) \land MUSS_LESEN(x, y))$
 - $\qquad \exists y \ \forall x \ (CLS(x) \rightarrow BUCHP(y) \land MUSS_LESEN(x, \ y))$
- Alle Studierenden haben nicht zugehört.
- Hans glaubt, dass eine der Teilnehmerinnen gewinnen wird.

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Übung zur Prädikatenlogik: Definition logisch-semantischer Relationen

Definieren Sie mit Hilfe der Prädikatenlogik die folgenden logischsemantischen Relationen (s. Foliensatz 01 'Intro'):

- Synonymie
- Hyponymie, Hyperonymie
- Antonymie
- Komplementarität
- Konversen

Vorteile der Übersetzung von NL-Ausdrücken in den Formalismus der PL

- berechenbare Verfahren zur
 - Semantikkonstruktion
 - semantischen Auswertung (Deduktion)
- strukturell eindeutige semantische Repräsentationen
- > präzise denotationelle (modelltheoretische) Semantik

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Recap Prädikatenlogik Prof. Dr. Anette Frank Formale Semantik, WS 2014/15

aus: Anette Frank, Formale Semantik WS 2014/15

Prädikatenlogik - Syntax

- Nichtlogische Ausdrücke:
 - Individuenkonstanten: CON
 - n-stellige Relationskonstanten (Prädikate): PREDⁿ, für alle $n \ge 0$
- Unendliche Menge von Individuenvariablen: VAR
- Terme: TERM = VAR ∪ CON

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

Formale Semantik, WS 2014/15

Prädikatenlogik - Syntax

- Atomare Formeln:
 - $R(t_1,...,t_n)$ für $R \in PRED^n$ und $t_1,...,t_n \in TERM$
 - $t_1 = t_2$ für t_1 , $t_2 \in TERM$
- Wohlgeformte Formeln: die kleinste Menge WFF sodaß
 - alle atomaren Formeln sind WFFs
 - wenn ϕ und ψ WFF sind, dann auch $\neg \phi,$ $(\phi \land \psi),$ $(\phi \lor \psi),$ $(\phi \to \psi),$ $(\phi \mapsto \psi)$
 - wenn $x \in VAR$, und φ ist WFF, dann sind $\forall x \varphi$ und $\exists x \varphi$ WFFs

aus: Anette Frank, Formale Semantik WS 2014/15

Skopus

- Wenn $\forall x \phi$ ($\exists x \phi$) eine Teilformel einer Formel ψ ist, dann ist ϕ der **Skopus** dieses Auftretens von $\forall x$ ($\exists x$) in ψ .
 - Wir müssen verschiedene Auftreten von Quantoren unterscheiden, weil es Formeln gibt wie ∀xA(x) ∧ ∀xB(x).
- Beispiele:
 - $\exists x \ (\forall y \ T(y) \leftrightarrow x = y) \land F(x))$
 - \bullet $\forall x \ A(x) \land \forall x \ B(x)$

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

aus: Anette Frank, Formale Semantik, WS 2014/15

Freie und gebundene Variablen

- Ein Vorkommen einer Variable x in einer Formel φ ist frei in φ, wenn dieses Vorkommen von x nicht in den Skopus eines Quantors ∀x oder ∃x in φ fällt.
- Wenn ∀xψ (∃xψ) eine Teilformel von φ ist und x frei ist in ψ, dann ist dieses Vorkommen von x von diesem Vorkommen des Quantors ∀x (∃x) gebunden.
- Beispiele:
 - $\forall x(A(x) \land B(x)) x \text{ kommt in } B(x) \text{ gebunden vor}$
 - $\forall x \ A(x) \land B(x) x \ kommt \ in \ B(x) \ frei \ vor$
- Ein Satz ist eine Formel ohne freie Variablen.

aus: Anette Frank, Formale Semantik, WS 2014/15

- Johann ist ein Student
 - student(j*)
- Johann liest ein interessantes Buch
 - ∃x((buch(x) ∧ interessant(x)) ∧ lesen(j*, x))
- . Johann liest jedes interessante Buch
 - $\forall x((buch(x) \land interessant(x)) \rightarrow lesen(j^*, x))$
- Nicht alle Studenten haben bestanden
 - $\neg \forall x (student(x) \rightarrow bestehen(x))$
- · Nur Johann ist durchgefallen
 - $\forall x (durchfallen(x) \leftrightarrow x = j^*)$

Dr. Michael Herweg, Einführung in die Logik, Univ. Heidelberg

aus: Anette Frank, Formale Semantik, WS 2014/15

- Genau ein Student ist durchgefallen
 - $\exists x (\forall y (student(y) \rightarrow y = x) \land durchfallen(x))$
- Bill ist genervt, wenn jemand lärmt
 - ∃x(lärmen(x)) → genervt(b*)
- Niemand hat jede Frage beantwortet
 - ¬∃x(∀y(frage(y) → beantworten(x, y)))
- Wale sind Säugetiere
 - ∀x(wal(x) → säugetier(x))